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SUMMARY

A scheme for obtaining exact potentlial-flow patterns
in & compresslible fluld is presented, The method 1a based
on a complex~-function theory developsd recently for the
golutions of the simultaneous first~order partial differ-
ential equatlions in the hodograph variables, The pro=-
cedure suggested is to take a gliven incompressible-flow
pattern given by an analytic funetion and to replace this
function by an associated complex function, a solution of
the compressible~flow equations, which will repressent an
assoclated compreeslble—~flow pattern, Thig method formally
solves the problem for obtaining an exact flow past a body
in a compressldle fluld; however, before such general flow
patterns can be obtained, the new complex functions in~-
volved muat first be studled and tadulated,

INTRODUCTION

This paper 1s intended to outline or sketch a process
for creating flow patterns-of a compreseible fluid by means
of a generallszed concept of a complex variable. It is
known that the present modes of treazting this problsm are
essentlall; of an approximate nature. For oxemple, the
methods of Prandtl and Glauert, Ackeret, Pogegl, Janzsn and
Raylelgh, and others are of an iterative nature and, after
one or two gteps, become unmanaceable, Recently Ringlebd,
following Chaplygin's original memoir published in 1904, od=-
tained exact solutions of the differential aquationsg for
compressible flows corresponding to a source and a vortex,
Ringleb?!s approach, however, does not appear to yleld a
general process for handling the problem.

It 1 belleved that the method outlinad in this paper
1e a natural approach to the solution of the problem, The




mathematical background for the detalls of the method has
already been developed. (Ses reference 1.) Only those
steps essential to the process are given -heresin.

THEORETICAL BACKGROUND

It 1s well known that the relatlons between the poten—
tial function P and the stream function V¥ in the incom=-
preeslible case are ' )

(py) ' (1)

These equations will be referred to as the P; (physical,
incompressible) equations. Since equations (i) are tho
Cauchy~-Biemann equatiors, f = @ + iV is an analytic
function of a complex variable s = (x + iy). It follows
then that the reflscted velocity wvaector 1s

af
— = u = iv = qe'ie (2)
dz

where q 1s the magnitude of the velocity and B8 1g the
angle the veloclty vector makes with the x—-axis,

If q end 9 ere introducsd as independent vatrlables,
equations (1) take on the form

dg = v, |
U (my) (3)

¢q = -i WGJ

These equations vwill be referred to as the Hi (hodograph,
incompressible) aequations.



The equations ¢orresponding to equations (1), in the
compressible case, ars

(2,) (@)

where p 1g the density of the fluid and po the stagna=-
tion (q = 0) density. These equations will be referred to
‘as the P (physiocal, comp easiblq) equatioans, ©OGince o

is & funciion of #x and » equations (4) are nonlinear
in character and tharefore are, in general, too difficult

to handle, It wesa first noticed by Molendroesk and later

by Chaplygin that, 4f 6 and q are chosen as tha in-
dependent varlables, then the equatlions correspondiag to
equations (4) are linsar in character. In the new inde-
pendent varlables the egquatlons bescome

Poa

o = 22y
g > (Ey) (6)
(1-¥%) |
Fg =B Ty
oYY

where M2 = q3/a® and a 48 the velocliy of sound correw
sponding to q.

It 1s remarked that. for - given atagnation conditlons
both p and M are functions of q oaly, Thus, the
coefficients of and Vg are functions of q only,
and aquations (6) are therefore linaer., The equatione
for p and MN®- arse ST

1 )
1 :
pup(l.._y-l-.gf-)
e : 2 8,® "
(6)

a qa (
N = Y-1.8
I




vhere
&, stagnation velocity of sound
b { ratlo of specific heats at constant volume and cone.

stant pressgure

It has been proved in reference 1 that, if @¢{6,q)
and V(0,3) satisfy equations. (5), then

;8.0 ' (1 ~ M3)
F(o,q) = & + 1’ a f (ﬂ'de - Po.‘ ” i‘dq_)
gy - :
f,q
p
+ 1 vae + — gliq (7)
L., (Do)

is & complex function of the end point (8,3), independent
of the path of integration, whose real ard lmaginary perts

® end ¥ also satisfy equations (5), The lower limits

8, and a; may be arbitrarlly chosen, ZFor most purposes
it is convenlent to choose g; = qp, where g, 1s the

maximun possldble velocity, given by

2 )
Qma y 18.03/5?.0 (8)

-

If, now, f =@ + W = 1 + 10, then the line integral
of - ecuation (7) yields

q.
(1) ' P
o + A e —_—d (9)
¥ “[;1 Pod :

By repeated applicatlon of the foregoing process an
unlimited number of particular solutions of equations (5)
‘can be obtained, Thus



. q a q
(3) _ s p 1) 2 5 o
"[;_1 pa \/q; Pod r ‘j!.: :

. q ' q , q
; : 1-H°
"(a)_ 0%+ 3193f £_ dq -~ 362.!f -&’—(——lf —F‘—dq_'a
L, Pl /q P - a, 5,9

: . >(10)
Q q (1M ). i .
—131 j L Po f L oagd
q q 4

vi®) .

(See reference 1.)

Similarly, when f ='0 + i, e complementary set of
particular solutions of equations (5) are obtained, These
take on the form

] q .' \
aw(t) oy (é + 1‘/; gEiEEE_l dq)
1 P
=(8) ’ * po(1-¥2)
1w =1(e°—3.'f -f—f dg
_ 1, P, pa S (1)
a :
po(1-H3)
+ 210 dq )
=D
1;(n) 2 4 o @ 7

(See reference 1.) If Y 4s chosen as 7/5, the evaluation
of the integrals 1s simplified. -

¥Yhen the fluid 1is inoompres 313 (that ig. a = xm, or
H= 0, p=p,), the solutions and 1W(n) reduce to




solutions of equations (3) and become, respectively,

(6 + £+ log q)® and 1(6 + 1 log q)®, That thesc are
solutione of equations (3) can easily be verified. It

ls precisely this correspondence between the solutions of
equations H, and H, that suggosts the process (given
in the following sectfon of eesoclating a compressible
flow with an incompressible flow.

Since equations (5) are linear, any linear combination

of the solutions w(n)' and 1?(nl are agaln solutions;
that 18,

A v®) . B, 1ﬁ(n)>

where and B are real constantse, 1s a solution of the
system o? equations (6). It may be pointed out, furtharcore,

that tho solutions ¥®) ana 17'®) are of elliptic tyoe in
one part of tho range of q and of hyperbolic type 1in ‘the
other part of the range of q.

OONVERSION FROM H, TO P, AND FROM H, 70 P,

In the incompressible case the same order of mathematical
difficulty oxlsts in going from the solutions of the P,
equations to the solutions of the H equations as oxists
in the revorse process, In tho comprsssible case, however,
it 18 at present nocessary to proceed from the solutions of
the Ec equations to the solutions of the P, equations,

_ et Q=@ +« 1V reprosent a.flow pattern in tho incom—
pressible care., It 1lg known that the reflected velocity
vector 1s

-18
=q_e

&8

It i3 convenient to introduce the wvariable

11 aa B+ 11 (» ) (
w = og i + 0 q = By 12)



which 18 a solution 4f the Hy equations. Then

n _ T - l
9!— - 9 iv , . (13)
4s .

Ir Q(x) 1s regardtz &» & Tanction of w, equation (13)
can be integrated; %

. 'f’“ 59_%“'%1 av  (5—aP,)  (14)

Bquation (12) may be oconsidered the transformation that
converts solutione of the P% equations to solutions of the
14

H, equations, and equation ) may be ccnsidered ns the

transformation that oconverts asolutione of the Hy eaquations
to solutions of ths Pi equations.

As an example, conslder the simple case of a source of
strength m at the origin in the physical plane. Thus

Q=@+ 1V 2 = log = (15)
2m

Then, from equation (12),

11 -
W = (v} ermye——
& 2ms
or
m m m
ni " -5“— iw + s;‘- log "5“" (16)

Thus, {3y as a function of z 318 given by equation (15)
and, a8 a function of w, by equation (16).

If Q had been preassigned as a function of w, a
solution of the Hy; equations, then by the use of equation




(14) =z 18 obtained as a fumction of w, BSolving for

w 1in terma of g and substituting w back into the pre~
assigned funcbtion gives 2 as a function of =, JFor ex—
snple, glven the relation expressed by equation (16), =
aqlution in the physical plane, from equation (14)

g = elv

=
2

is obtalnsd. Solving for w in terms of 2z and substi—
tuting in equation (16) gives equation (15), which is ildonti-
fled as m source of strength m. This is the procese of
golng from the solutions of the H equations to the solu—
tions of the P,; equations (Hi—g-%i).

In the compressibleo case, the corresponding process of
golng from the solutions of the H, equations to the solu-
tions of the P_ equations (B,—=P,) 1s followed in this
paper. ¥or this purpose a relation analogous to that of
equation (14) is nocessary. Tkis relationship is givon by
the palr of knowa squations:

. dx:(cos ) ¢‘q.__po sin © wq)ﬂq(co: 0 qe _ Po 'ﬂ-ix! B-w9>dew

14 2] Pq

? (17)

sin © po cos 8 gin @ . p, cos ©
dy=( - Pq+ w)dq+( Q.+ -¢>ae
q Pa g a 6 pe, 9 »

By simple algebra, equations (17) can be arrived at by uso
of equations (5). It 1s usoful to bear in uind, solving a
particular problem, that equations (17) aro exact differ—
entials, .

As an exanple, conslder the solution of the H, equa~
tions given by

._a .
Qc=¢+1\v=ii'=i<9+if po<1H)d9_> (18)
pa .




Heare

and

If partial derivatives arc teken and substituted ia equa~—
tion (17), the following equations are obtained:

pol1-H3) cos 6 p, sin @ )
dx = — . dq = =2 a0
Pa Pq
L (19)
ay = — po(1-H®) sin © po cos € 46
pq? . PQ )

By uce of the relation

_ M

) q

%
dq
the palr of functions of whioh equations (19) are the exact

differentinsls are rocognized as

Po cos O
Pq

XX =

Po gin ©

y = —

Pq

If each side of the two equations 1s squared pnd suamed,
the following equation 18 obtained
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:. o+ yﬂ - rB = Poalpnq_. (20)

Bquation (20) implies that the product of the density
and the veloecity varies inversely as the dletance from the
origin,

In order to 1ldentify the character of the potentigl
and stream lines, ¢ and V¥ are set equal to constants;

that 1is,
(1-43)
p‘u—fpo dg = ¢,
pa

and
v z 0.a ;g
_The stream lines
@ = constant
are radial lines, and the pot;ntial lines

Po (I-HB)

Jr dg = consbtant
Pq

are concentric eilrcles, Tﬁis flow pattern ig therefore
that of a source,

It 18 of interest to obsarve that by a similer process
the solution

Q=W =0 + 1d/' L a
G = ¥ P ¢

"can be shown to represent a vortex in a compressible fluld
in the physical plane.
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In the incompressidls case, the source in the 6,q-
plane is given by 4w and, in the compresslble case,  the

"~ ''gource 4in the 0,q~plane 1is gilven.by - 1%,

The qualitative similarity betweep the quantities w
and ¥ and the quantities 1w and 1W can easily be
recognized., It is this qualitative ginilarity between the
solutions of the H; equations and the Hy equations thatl
serves, in a sense, to pick out the Puseful® solutions of
the H, equations from the unlimited number of solutiona

given by the expresslon

z(ay w®) 4+ g, 1F(n)>

pararetric in a, and B,. The followling procedure may be
weed: Given a "ugerul® flow pattern $ly of en incomprossi-
bPle fluid in the physical plane, convart tkis pattern intc =
pattern in the Hy plane; that 1la, coavert 3y 1iato a func—
tion of w and iw. Expand (3 1in a power saries!

, =E(a.n Wt + I 1wn> (21)

Then, the compressible flow given by

Q, = z(a,n v®) 4 g, ﬁr(n)) (22)

where the real constante a, and P, are the same ae in
equetion (21), is the associated compressible—flow pattern
of the incompressible—flow pattern given by equation (21).

If equation (21) represents an incoupressible flow
past & body By, then eguation (22) representes a com—
presgible flow vast an associated body Byy which may bo
dlstorted from By - by.some factor depeniing on the Mach
numrber., When the body B, 18 obtalined, well—known methods
-(reference 2) can be used to fiad the inconpressible flow
past By in order that the two flow patteras about 3B,
can be compared and stmdlied for a gilven Mech number,

If the comprbsiible flow about a preassigned body is
desired, 1t will be noacessary to start with a body 3,
that is distorted in the opposite direction,
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. Finally, it 1s emphasized that, 1in order to obtaln )
g sultable computaticnal procedure for the. process mentioned-
in thia paper, the functions correspondiag to the elemen—
fary functions — for example, sine, exponential, and loze-
*ithm — must be studied and tabulated. Some inforuetion
concerning thege functione can bo found 1n roferemnce 1,

Langley Memorial Aeronsutical Laboratory,
Hational Advigory Committes for Aoronautilcs, .
Langley Pield, Va. '
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